
Automated Negotiation In The Game Of

Diplomacy

Adam Webb

Jason Chin

Thomas Wilkins

John Payce

Vincent Dedoyard

January 2nd, 2008

1

2

Abstract

Diplomacy is a strategic board game with relatively simple tactics

but with a rich negotiation element between players. The Diplomacy

AI Development Environment provides a framework within which au-

tomated Diplomacy players can be developed. We create a simple ne-

gotiating Diplomacy player within this framework and use it to show

that negotiating players outperform non-negotiating ones.

3

Acknowledgements

First and most of all, we would like to thank Iain Phillips for supervising

our project and pointing us in the right direction. We’d also like to thank

Jaspreet Shaheed for meeting with us to discuss his work in AI development

in Diplomacy. Also, importantly we would like to thank the entire Diplo-

macy AI development community, particularly members of the DipAI forums

and those who developed core parts of the DAIDE architecture i.e. David

Norman, Henrik Bylund, Andrew Rose, Daniel Yule, and John Newbury.

CONTENTS 4

Contents

1 Introduction 6

2 Background 8

2.1 Game Of Diplomacy . 8

2.1.1 Nature Of The Game 8

2.1.2 Tactics and Strategies 9

2.1.3 Impact on AI Development 11

2.2 DAIDE And Associated Tools 13

2.2.1 Protocol . 14

2.2.2 DAIDE Server . 16

2.2.3 DAIDE Mapper . 17

2.2.4 DAIDE Java AI Communication API 17

2.3 Existing AIs . 19

2.3.1 DumbBot . 19

2.3.2 Diplomat . 20

2.3.3 BlabBot . 22

2.3.4 The Israeli Diplomat 22

2.3.5 The Bordeaux Diplomat 24

2.3.6 LA Diplomat . 25

3 Board Representation 26

3.1 Addressing Provinces Correctly 26

3.2 Units and Their Owners . 27

4 Tactics And Strategies 29

4.1 Weighting algorithm . 31

4.1.1 Working out the strength of a power 31

CONTENTS 5

4.1.2 Working out the initial values 32

4.1.3 Blurring the values around the map 32

4.1.4 Working out the strength and competition values: . . . 35

4.1.5 Working out the final destination values: 37

4.2 Generating orders . 37

4.2.1 Spring/Fall turns . 37

4.2.2 Summer/Autumn turns (retreat/disband) 39

4.2.3 Winter turns (builds/disband) 39

5 Negotiation 40

5.1 Message Listener and Thread Interaction 40

5.2 The Negotiator Thread . 40

5.3 Our Negotiation Strategy . 41

5.3.1 Peace To All . 41

5.3.2 Back-stab . 43

6 Conclusion and Evaluation 44

6.1 Tests Performed and Results 44

6.2 Analysis and Conclusion . 44

6.3 Evaluation . 48

7 Future Work 48

7.1 Improvements to the DAIDE framework 49

7.2 Improvements to Our Code Base 49

7.2.1 Banker Paradigm . 49

7.2.2 Other Extensions . 50

7.3 Open-ended Improvents . 51

1 INTRODUCTION 6

1 Introduction

Diplomacy is a classic and well respected strategy board game currently

published by Avalon Hill[1] noted for its relatively simple gameplay mechanic

but rich higher level play based around negotiation between players. It is well

liked by board game aficionados. For example on the board game fan site

BoardGameGeek it is ranked 153rd out of 4177 games rated. [2]

The game is set in Europe at the start of the 20th century. The board

is divided up into 75 named provinces (which are either inland e.g. Ukraine,

sea e.g. North Atlantic or coastal e.g. Holland). 34 of the inland and coastal

provinces are designated as supply centres which allow players to support

a unit on the board. These units are either armies or fleets. One unit

is allowed in any province at any one time with the intuitive restrictions

on which provinces armies and fleets are allowed to occupy. Each player

takes control of one of the seven Great Powers of the time and starts with

a handful of home supply centres and the units associated with them. For

example England starts with an army in Liverpool and fleets in London and

Edinburgh.

Play progresses with players negotiating, secretly issuing orders to their

units and then once all players have finished resolving the turn. Full dis-

cussion of what orders can be issued is quite lengthy but in essence players

may either hold its position, move to a province adjacent to it’s current one

or support the move of another unit (this is useful as all units are of equal

strength so force of numbers determines whether or not a move is successful

Players advance capturing new supply centres allowing them to build new

units at their home centres. If a players loses supply centres to enemy action

they must disband (remove from the board) units to reflect the number of

supply centres they have. Once all orders have been issued they are executed

1 INTRODUCTION 7

simultaneously to determine the new state of the board. Orders may be un-

sucessful (they are referred to as bouncing). A simple example of this is if

two units attempt to move into the same province. Without support from

additional units both moves are unsuccesful and the pieces remain in the

same positions. A player wins when they control the majority of the supply

centres (i.e. 18 or more of the 34).

On top of this relatively simple game play mechanic is a complex system

of negotiation. Players are free to discuss with each other any aspect in

the game either privately or publicly. The scope of these negotiations is

only limited by the players themselves. Alliances may be formed, provinces

may be demilitarised and complex written agreements may be drawn up.

However as players issue their final orders secretly intrigue and deceit are

almost inevitable. Thus players must constantly guard against a betrayal by

even their closest allies.

The objective of our project is to develop an AI to play Diplomacy with

some degree of automated negotiation. There is a pre-existing framework

for developing such AIs called the Diplomacy AI Development Environment

(DAIDE) [3]. This provides a protocol for playing the game and negotiating

as well as various tools (e.g. a server which hosts games and resolves orders

and a mapper which represents the game graphically and provides an inter-

face for human players). Our AI is intended to work within this framework.

2 BACKGROUND 8

2 Background

2.1 Game Of Diplomacy

We have briefly discussed the game of Diplomacy in the introduction to this

report. Full treatment of the rules of the game would be too lengthy to be

usefully included here. One should refer to the official rules of the game [4]

for specific discussion of the minutiae of play. This chapter is reserved for

general discussion of the nature of the game as well as possible tactics and

strategies for good play.

2.1.1 Nature Of The Game

It seems wise at this stage to discuss some general properties of the game of

Diplomacy.

Completely Deterministic The results of a turn are completely determined

by the state of the board at the start of that turn and the orders issued by

players during that turn. There is no element of chance involved.

Imperfect Information The simultaneous execution of secretly determined

moves means that players do not have complete knowledge about the actions

of other players i.e. they have imperfect information. This means that even

though the game is deterministic players cannot predict the results of their

actions even one turn in advance. This is in stark contrast to games such as

Chess and Go where AI development is more mature.

Zero-Sum A zero-sum game is a game in which a player’s gains or losses

are exactly counterbalanced by the gains or losses of other players This is

true of Diplomacy. A player can gain supply centres only by denying them

to other players.

Psychological Aspect The importance of the psychological aspect of diplo-

2 BACKGROUND 9

macy is hard to overestimate. An effective player must attempt to predict

the actions of other players. A better must be able to manipulate the actions

of others to suit its own ends. Furthermore players must be able to recognise

when this is being done to them. This is something human players are very

good at but is very difficult to program in bots. Concepts such as honesty

and deceit; trust and suspicion; rewards and revenge are integral to the game

and a good bot should reflect this.

2.1.2 Tactics and Strategies

Diplomacy is a very popular game with a dedicated fan base. As such there

is a wealth of material discussing how to play. Notably there is a player

edited wiki [5] and an archive containing a large collection of articles written

over the years [6]. This material ranges from general strategy, recommended

openings, end game considerations and psychological insights. This material

is obviously vast with a degree of internal contradiction represnting disagree-

ments amongst players. However there is some limited consensus among this

material.

Opening Phase

The opening of the game has several notable aspects. Much is written on

various opening strategies for different powers and from this one can make

several general observations on what is important.

• Securing neutral supply centres is important. Negotiation should be

used to achieve this with minimal conflict at this stage. This helps

prevent your power from falling behind by failing to gain supply centres

when others do.

• One should gain information on other players. Human players attempt

2 BACKGROUND 10

to feel each other out at the start of the game. Many guides put

emphasis on communicating with every player even those who are on

the other side of the board in order to acquire information about them

[7]. This is of particular importance for AI play where players may

have vastly different negotiating capacities.

• Observing which directions other players move in is likely to reveal

which players will come into conflict during the game. For example

England moving a fleet into the English Channel is widely seen as

likely to bring England and France into conflict. [8]

Mid-Game

Mid-game is the most open phase of play and makes up the bulk of the

game. There are several things a good player should do in this stage.

• Players should prevent opponents reaching a dominant position. At-

tacking the largest power may well be a good strategy in order to

prevent them from achieving the momentum necessary to win.

• Attempt to bring more supply centres under our control in order to

move towards victory.

• Determine which players and which are enemies. This is often deter-

mined by actions in the opening phase.

• Identify which players are our allies and avoid attacking them in pref-

erence to eliminating enemies. Avoid antagonising allies unless there is

no other option.

End-Game

2 BACKGROUND 11

This is the stage where there will be one or more powers in a potential

winning position. Here we should atttempt to either win if we are dominant

or prevent a dominant player winning if we are not.

• If we are a small power ally with other small powers to prevent domi-

nant powers from achieving victory.

• If we are a large power consider betraying our alliances to make the

break away necessary to secure victory.

Low-Level Tactics

Above we have discussed broad considerations at the strategic level how-

ever we must use a finer level of tactics to decide what we are going to do

from turn to turn. Some such considerations are:

• Units should where possible move forwards and attack enemy supply

centres. If we are not near any enemy supply centres they should

naturally move closer to them to make future attacks possible.

• However we should also ensure our own supply centres are not unde-

fended.

• Units should act together in order to secure objectives. Isolated units

are likely to be destroyed or pushed back.

2.1.3 Impact on AI Development

The considerations above impact on AI development in several key ways.

Large Search Tree

The number of possible moves in Diplomacy is vast This makes generating

a search tree of future game states intractable. As other player’s moves are

secret and resolved simultaneously we cannot accurately predict the state of

2 BACKGROUND 12

the game board even one turn in the future let alone deeper into the game.

However our bot must not be shortsighted and consider only immediate ad-

vantage. It must be able to think about the future in general terms if not

specifically.

Difficulty of Position Analysis

Unlike games such as chess where it is relatively easy to analyse the strength

of a position based simply on the locations of the pieces on the board position

analysis is extremely difficult in diplomacy. This is because of the psycho-

logical aspect of the game. Whilst we may have a material advantage on the

board one must also consider how much we have antagonised other players.

A player with many units but maby enemies is probably in a worse position

than a well connected player with slightly fewer units. Heuristics to evaluate

these psychological factors must be developed.

Complexity of Negotiation

Negotiation in diplomacy is extremely complex. Human players engage in a

variety of different types of communication ranging from broad expressions of

attitude towards each other through specific move suggestions to allegations

of treachery and justifications. Thus a full negotiation language between AI’s

must be extremely rich. Even implementing a subset of the communication

humans use is a daunting prospect.

Evaluation of the Benefits of Helping Others

A good player should recognise that helping other players now even if there

is no immediate benefit could prove useful. We need a heuristic to recognise

these unclear benefits based on the trustworthiness of the opposition and the

value of our help.

2 BACKGROUND 13

2.2 DAIDE And Associated Tools

There are various software interfaces available that adjudicate and allow users

to play games of Diplomacy.

• Online servers: There are many web-sites [9] [10] that provide users

with the ability to play games on the internet via their web-site or

via e-mail. Once all the users submit their orders and they have been

received, the server then evaluates the moves and then sends the results

to the players and the new game state.

• The Hasbro Diplomacy Game: A game developed by Microprose and

released in 2000. It gave players an interface and AI to use and provided

multiplayer support on local machines and the internet. AI is generally

considered to be quite poor.

• DAIDE (Diplomacy AI Development Environment) [3] : This was cre-

ated by the DipAI organisation. Developed to allow and encourage AI

Diplomacy bots. It gives players a server, interface and tools to create

an automated diplomacy player. It provides the syntax for communi-

cating over the network for the use of negotiation. Players can also

compete via local machine or the internet and there are multiple bots

available [11] .

We decided to develop using DAIDE as it provides us with a server

that handles communication between computers, evaluates moves, provides

a graphical user interface for viewing the board and provides the syntax for

players to communicate with. As it is designed specifically for AI, it will al-

low us to concentrate solely on creating a negotiating agent. It also provides

us with a test harness against other proficient AI negotiating bots, as there

2 BACKGROUND 14

are many bots available for the DAIDE server, and many of the recent bots

are written for it. The DipAI community is also very active, and so they will

be able to provide valuable information, advice, discussion and feedback to

the project.

2.2.1 Protocol

In the DAIDE architecture, there is a central server that hosts the game, and

all clients then connect to it. All communication is handled via the DAIDE

server, such that if a client wants to send a message to another client, it

will send the message to the server, specifying which power(s) to send it to.

The server will then handle the message, check the syntax, and if everything

is ok, it will send it to the specified client (or send an error message back

to the client if it does not understand the message). Messages between the

server and client are also sent, such as the current state of the board and the

current orders.

The DAIDE syntax [12] defines communication protocol between Diplo-

macy players for negotiation. This was developed from the analysis between

the kinds of communication that took place between players during a game.

It provides a player with tokens based on those exchanges, which allow play-

ers to ’talk’ between each other on a particular subject, without them having

to understand natural language.

These sets of tokens are grouped in levels of press, starting from Level 0

(no press, no communication) and increasing in complexity up to Level 130

(explanations) and a special Level 8000 as free text.

Table 1 shows the press level and its definition for the DAIDE syntax

hierarchy.

Using this press level hierarchy, we decided to aim for press level 20,

2 BACKGROUND 15

Level 0 No Press

Level 10 Peace and Alliances

Level 20 Order proposals

Level 30 Multipart Offers

Level 40 Sharing out the Supply Centres

Level 50 Nested Multipart Offers

Level 60 Queries and Insistences

Level 70 Requests for suggestions

Level 80 Accusations

Level 90 Future discussions

Level 100 Conditionals

Level 110 Puppets and Favours

Level 120 Forwarding Press

Level 130 Explanations

Level 8000 Free text

Table 1: Press Level & Explanation

2 BACKGROUND 16

which is generating order proposals. This includes suggesting moves and

also offering peace and alliances to other players. We chose press level 20 as

a bot that reaches that level will be able to instantiate relationships between

other players and use that relationship in a manner that will benefit it. This

will create a fairly capable bot as most other bots only play press level 0 or

10.

As there are also many different variants for the game of Diplomacy, we

have chosen to play the standard map, with no time limits. This is the most

basic and common variation and the one that most bots and human players

play.

2.2.2 DAIDE Server

The DAIDE server application [13] is written by David Norman and it allows

the clients that are playing or observing to connect to the Diplomacy game.

It resolves the turns once everyone has submitted their orders and it also

parses the messages sent throughout the game, checking for correctness.

The server allows for developers to concentrate solely on their AI, as they

do not need to create their own adjudicator because the server does it for

them. It also handles the syntax so that the messages that you will receive

will always be of specific syntax and grammatically correct within the DAIDE

language.

We will be using this server as it currently the only one available that uses

the DAIDE architecture and allows us to communicate with other clients, as

well allowing us to concentrate more on other aspects of our bot.

Figure 1 shows the interface for setting up a server.

2 BACKGROUND 17

Figure 1: Server Interface

2.2.3 DAIDE Mapper

The DAIDE mapper application [15] is also written by David Norman and

it allows human players to connect to the server. It also allows people to

observe a match on the server. Human players are able to interact with the

mapper by using its graphical interface. Users that connect via the mapper

are shown the board representation and itfs current state in the graphical

environment.

Figure 2 shows the mapper interface.

2.2.4 DAIDE Java AI Communication API

This is an API written by Daniel Yule [16] so that Java AI bots will be able

to connect to and communicate with the DAIDE server. The framework

handles the network protocols for sending and receiving messages, so that

the developer does not need to deal with it and can concentrate developing

2 BACKGROUND 18

Figure 2: DAIDE Mapper

2 BACKGROUND 19

the AI.

There are also many other frameworks for the DAIDE server that is writ-

ten in other languages, such as David Normans C/C++ framework [14] and

Fredrik Blomfs .NET APIs framework [17]. The C++ framework is also

more sophisticated as it handles the map representation of the board and its

current state.

However, we chose to use the Java framework to develop or bot, as even

though it does not sort out the internal map representation, all the members

of our group had more experience with the Java language.

2.3 Existing AIs

Due to the strong Diplomacy AI community, there are numerous existing AIs

around that try to create an effective Diplomacy player. Some of which are

capable of negotiating, but most bots are only capable of playing games on

a strategic level only. They all offer a wide range of different approaches to

the problem. Some of them use the DAIDE server whilst other’s do not. The

following six bots were amongst the most helpful towards our project.

2.3.1 DumbBot

Created by David Norman [20] , it is a simple but effective bot that is known

for being able to beat beginner and naive players. It uses the DAIDE server

to play its games and it is a popular bot amongst the DipAI community for

its simplicity. It does not handle press games and so only provides a heuristic

for the strategies and tactics.

This bot uses a simple algorithm that firstly assigns a value to each node

in the map. This number takes into account factors such as who owns it and

how strong they are, how defenceless it is, how much competition it has and

2 BACKGROUND 20

how what the chances are that it will be able to successfully move there. It

also uses an algorithm that averages the board so that one node’s value will

affect its adjacent nodes, so that it can give a more general view of the board.

Once every node has a value, it then performs a very simple algorithm to

compose a move set for all its units. This is based on randomly selecting a

unit and moving to the node with the highest value. Supports are performed

when there are clashes and convoys are not supported.

The obvious strengths to the way that DumbBot calculates moves is its

simplicity. It has an effective heuristic that calculates values for each node,

and is able to produce simple move sets. However, it is far from perfect as

the order sets that are generated are not effectively chosen upon. As it uses

non-determinism to decide the order of units, it does not produce the best

possible set. It is also not well documented.

2.3.2 Diplomat

Jaspreet Shaheed’s Diplomat[18] is an effective negotiating bot that uses

deceit to win. It also uses the DAIDE server to play Diplomacy games and

uses in depth but efficient algorithms to find the best order sets. It can

negotiate to a high press level, as well as use deception to win games. It also

does not use convoys.

It first has uses a tactical component that is based on grouping its units

into clusters. It first considers which provinces that it would like to occupy

and then tries to move towards them. These provinces will lie on the front

of the Diplomat’s territory. It uses clustering by making units form small

groups and then selects the best sub-plan for each group. It then joins all

the sub-plans up to create a whole order set. This is done so that it does

not perform too many intense calculations, as there are exponentially many

2 BACKGROUND 21

possible permutations of sets of orders for each turn for a bot to decide. It

then uses the clustering to try to find a trade-off between losing good plans

and computing too many. It then tries to perform a static evaluation to

predict which moves will succeed.

It then uses a Market Based approach for negotiation. It uses an eco-

nomic based view of Diplomacy to trade resources (units) to focus on the

results of the exchanges. This is also much more efficient and simpler to im-

plement then an argumentation based implementation. It exchanges ’IOU’s

for supports to different powers, so that the agreement will be returned in the

future. It communicates with all the other powers by setting up a simulated

’meeting’ with those that are involved in the deal and treats it as an auction,

where the winner is the one that makes the deal in the end. It then uses a

strategy to help it on how to make use of negotiation.

The bot also included deceit to decide when to keep and break agreements

that have been set. It also deals with how it will react when agreements

have been broken by other players. To determine whether it should keep an

agreement, it holds the notion of reliability (the chance that they will keep

the next agreement that they make) and honesty (whether they are weighted

towards keeping or breaking an agreement) for each power. It reacts to stabs

by changing power’s reliability and also considers in future how much their

’IOU’ is worth to it.

While the Diplomat is an effective bot, it is very in-depth and it does not

offer the best heuristic for tactical evaluation. Despite it trying to find a good

general plan, it performs worse then DumbBot which does not generate the

best plan [18] . However, the negotiating aspects and especially the deceit

aspects of the Diplomat are effective and show an interesting take on how it

can be modelled.

2 BACKGROUND 22

2.3.3 BlabBot

This is a level 20 press bot created by John Newbury [22]. It also runs under

the DAIDE framework to a good standard and offers negotiation. It has built

upon the DumbBot heuristics that evaluate its moves.

BlabBot uses simple negotiating techniques to create an effective bot. It

works by sending peace messages to all the powers. It then uses weights in

the DumbBot algorithm so that friendly supply centres and units are taken

a lot less into account. If all players agrees and so it is then at peace with

all players, it will perform in two fashions depending on the policies selected.

It will either ignores all friendship and performs exactly like DumbBot, or it

will send out a draw message every turn to try to resolve a draw outcome.

This is a very simple implementation of an automated negotiating bot.

It uses DumbBot’s heuristics so that it can work more towards negotiating.

It then tries to form bonds with all accepting peace powers, which has an

obvious advantage against no press bots, as they will be able to ’team-up’

against them. When running multiples of this bot on the same game, it is

therefore much more likely to succeed as it will naturally team up to battle

against the other powers. However, it has no sense of deceit. It makes no

attempt to exploit a friend or attempt to detect a lie. Most importantly,

when faced with a lying bot, it does not change its opinion of them at all,

even if they are attacked by them. However, it shows that a good bot can

none the less be produced by working from another bot’s tactical heuristics.

2.3.4 The Israeli Diplomat

The Israeli Diplomat created by S. Kraus, D. Lehmann and E. Ephrati [23]is a

highly sophisticated Diplomacy player that uses a rich logic based language

to attempts to mimic the negotiation in Diplomacy. It does not use the

2 BACKGROUND 23

Figure 3: Israeli Diplomat Structure

DAIDE server for playing its games. It uses a multi-agent architecture that

is based on real life war-time government structures. This was developed

so that it can split up how each part is determined and to split each of the

bot’s tasks. Opponents only talk to the ’Prime Minister’, whose job is to

decide on the diplomats play style. If needed, the Prime Minister will pass

the suggested negotiation to another role to gain and opinion before replying

to the other power. Diagram 3 shows how the Israeli Diplomat is structured.

This complex architecture allows it to work at very high press levels

and has been very successful in the past. Unfortunately, the hardware for

which this Diplomat was designed no longer exists and due to its complex

nature no one has yet to take on the task of re-programming it. So not a

2 BACKGROUND 24

lot is known about the in depth nature of this architecture. There is also no

detailed information regarding its heuristics or how the bot comes to form its

decisions. However, the architecture of the bot provides some very interesting

ideas.

2.3.5 The Bordeaux Diplomat

The Bordeaux Diplomat [24]was created by Daniel Loeb and Michael Hall

and was created to explore the tactical and strategic parts of the game. It

works on the principle that your enemies will always choose their best moves.

Using this, the bot tries predicting its opponent’s moves and decides on the

best moves for its pieces given the predictions.

However, the map is too big and there are too many moves to think

about in the search space. So, to overcome this, the Bordeaux diplomat

breaks the map down into smaller sections, groups of provinces which make

up the map. By only looking at these small groups of provinces at a time,

the search space is significantly reduced. However this does make the bot

slightly short-sighted when making its decisions. This bot also uses the idea

of using a sphere of influence, in which a power uses its home supply centres

as a point of origin and tries to expand from there. It then builds a wall

between its home centres and other powers using its units, expanding the

sphere as it captures more supply centres. This is illustrated in Diagram 4 .

Although it performs well and offers interesting tactical heuristics, it is

not obvious how it can be adapted to include negotiation.

2.3.6 LA Diplomat

Created by A. Shapiro, G. Fuchs, and R. Levinson, The LA Diplomat [25] also

does not use negotiation but instead focuses on tactical evaluation. Rather

2 BACKGROUND 25

Figure 4: Sphere Of Influence

then working out which order sets is the best possible, it uses a pattern weight

system and uses temporal difference learning for it to remember which moves

are the best.

For each turn, the diplomat generates all the legal orders for each individ-

ual units, generates all legal order combination, matches the orders against

a database and chooses the top rated moves.

This allows the bot to learn important tactics in Diplomacy. However, it

was developed very slowly as it takes time for the database to build up before

it became effective. The size of the database will also become an issue as it

has to store a lot of data. It was also not immediately clear how negotiation

could be added on to it, if at all.

3 BOARD REPRESENTATION 26

3 Board Representation

3.1 Addressing Provinces Correctly

As mentioned before provinces can hold only one unit at a time, either an

army, or a fleet. So it would make sense to store the list of adjacent provinces

for either of these, inside an object of type Province. However, problems arise

on coastal provinces, where armies and fleets can both go to. The problem

is that provinces will have a weight (a number indicative of a nearby units

desire to go there), and that weight will be different for armies and fleets. For

example, if an unowned supply centre was one province inland of a coastal

province, due to averaging, that coastal province may have a very high weight.

However, if a fleet were to travel to the coastal province because of this, it

would just waste its moves, because it would have no way of gaining (or even

aiding) an army’s attempt at) control of the supply centre. There is secondly

the problem of a province with 2 coasts. A bi-coastal province would have

an army occupying its entire region, however, if a fleet were to move to it,

it would only be able to move to a coast of the region (e.g. North). This

complicated things further, as different coasts would have different lists of

adjacent provinces for fleets, but they would be the same for armies. Also, if

a fleet was adjacent to a bi-coastal province, it would not know which coast

of the province it would be able to move into, just that it could move into

that province. Which made the weighting algorithm seemingly impossible to

cope with, as the same problem arose again, which was that, a weight on one

coast may not be as high for a weight on another coast, so moving to the

province may be useless.

To overcome this problem we created a Node class, each Province class

would contain 3 instances of type Node. Type node contains an adjacency

3 BOARD REPRESENTATION 27

list, and a weighting (organised via a hash table of powers, so that later we

could check the value of another powers move compared to how much we

value it). It also has references to a Unit and Province, as well as functions

to determine its weight. Within the province class, the 3 nodes would be

referenced as follows:

• Node 0 would only ever be used by armies it would be named as the

province name, with the suffix of AMY.

• Node 1 would be used by all fleets which are at sea, and they would

be named as the province name with the suffix FLT. Or, if it was a

bi-coastal province, the name would be the province name, with the

first coast suffixed.

• Node 2 would always be null unless it was a bi-coastal province, and

in which case it would be named as the province name with the second

coast suffixed.

On coastal provinces Node 0 and Node 1 would be used, on bi-coastal, all

would be used; otherwise, only fleet and army nodes would be used for sea

and inland provinces, respectively.

3.2 Units and Their Owners

Unit is created as an abstract class, which contained general methods gov-

erning standard unit behaviour. Such as what their planned action was, their

location, and their controlling power. Army and Fleet are implementations

of this. Their differences are just in the make up of their orders. For ex-

ample, armies never got to coasts, they always go to the province, yet they

have to recognise when they’re supporting a unit (fleet) which is moving to

3 BOARD REPRESENTATION 28

the coast, so they have to obtain and parse the correct node. A class Power

exists, and at game set-up time, 7 instances of it are instantiated in the one

instantiation of class Map. The power class contains information on how

many supply centres the power owns, references to all its units and their

locations, whether it has accepted peace with us, whether it is capable of

any press level greater than 0, whether we consider it an enemy, whether we

want to back-stab it, and information on the banker paradigm (§7.2.1). The

methods revolve around manipulating and storing these values. After each

turn allowing movement, the DAIDE server sends to all the clients several

messages starting with ORD. These show all the moves that had been made

(or had been attempted, but cut or bounced). This is where The Diplomi-

nator learns who its actual allies are and who it’s enemies are. Before the

ORD phase, the map has not been updated, and so the map can calculate the

possible chances another power has had to attack us. That is to say, all the

instances in which they were next to us. These numbers are added up for 1

turn, which are then accumulated over several past turns. The accumulation

over past turns is done so that our bot has a memory over who is friend or

foe. It only records this however for every 15 turns, as alliances change. We

experimented briefly with this number, and found 15 to be optimal. When

all the ORD phase messages have been received, we see who actually did

attack us, and that number accumulates inside the power in the same way as

the chances did. With this information, we can evaluate the enemy factor.

It is simply determined by this equation:

EnemyFactor =
attacks

chances
or if chances = 0 EnemyFactor = attacks

It is a number used in calculating whether we accept many agreements,

and how we treat the power in question, on the map. I.e. whether we feel it

is appropriate to back stab said power, or to carry on treating them as allies.

4 TACTICS AND STRATEGIES 29

The boolean for a power that’s accepted peace is re-evaluated every time the

enemy factor is evaluated, to make sure it doesn’t exceed a set threshold.

In the Map class, all provinces, nodes, powers and units are all stored in

a hash-table, with reference as a string of their name.

4 Tactics And Strategies

We decided that the best way to structure our tactical algorithm was to

firstly assign some sort of values to each node, for all the provinces, based

on how much we value that node. From there, we can do an evaluation for

all our units to decide the best move set. As DumbBot [20] uses a similar

structure very effectively, we decided to use it as a base to expand upon.

DumbBot algorithm works by firstly giving each node a value for how

much we would want a unit there. As the map separates army nodes and

fleet nodes, this works well for determining the difference between how much

each type of unit values a province. It then generates moves for each of it’s

units by selecting a unit at random and then by looking at the value of each

node that it can move into.

Even though it is a non-negotiating bot and uses very simple heuristics

for it’s tactical analysis, as well as not supporting convoy moves (which is an

important aspect in the game), it is none the less still highly effective. It’s

simplicity and effectiveness were the main contributions on deciding to use

it as a basis rather then working out a new heuristic from scratch. We also

believed that it will allow us to spend more time and resources on developing

a sophisticated negotiating agent, the important aspect of the game and

project.

It was also pointed out in previous research papers such as (’Creating a

4 TACTICS AND STRATEGIES 30

T
h

e
D

ip
lo

m
in

a
to

r

+
T
h
e
D
i
p
l
o
m
i
n
a
t
o
r
(
i
p
:
I
n
e
t
A
d
d
r
e
s
s
,
p
o
r
t
:
i
n
t
,

n
a
m
e
:
S
t
r
i
n
g
)

+
m
e
s
s
a
g
e
R
e
c
e
i
v
e
d
(
m
e
s
s
a
g
e
:
S
t
r
i
n
g
[
]
)
:

v
o
i
d

+
h
a
n
d
l
e
P
r
e
G
a
m
e
(
m
e
s
s
a
g
e
:
S
t
r
i
n
g
[
]
)
:

v
o
i
d

+
h
a
n
d
l
e
H
L
O
(
m
e
s
s
a
g
e
:
S
t
r
i
n
g
[
]
)
:

v
o
i
d

U
n

it

M
a

p

+
c
a
l
c
D
e
s
t
V
a
l
s
(
P
o
w
e
r
)
:

v
o
i
d

+
g
e
n
B
u
i
l
d
O
r
d
e
r
s
(
m
e
:
P
o
w
e
r
)
:

v
o
i
d

+
g
e
n
M
o
v
e
O
r
d
e
r
s
(
m
e
:
P
o
w
e
r
)
:

v
o
i
d

+
h
a
n
d
l
d
e
O
R
D
(
l
i
s
t
O
f
O
R
D
:
L
i
s
t
<
S
t
r
i
n
g
[
]
>
,
m
e
:
P
o
w
e
r
)
:

v
o
i
d

+
s
u
b
m
i
t
O
r
d
e
r
s
(
m
e
:
P
o
w
e
r
)
:

L
i
s
t
<
S
t
r
i
n
g
[
]
>

+
g
e
n
e
r
a
t
e
R
e
p
l
y
(
m
e
s
s
a
g
e
:
S
t
r
i
n
g
[
]
,
m
e
:
P
o
w
e
r
)
:

S
t
r
i
n
g
[
]

P
ro

v
in

c
e

N
o

d
e

+
d
e
s
t
i
n
a
t
i
o
n
V
a
l
u
e
:

H
a
s
h
t
a
b
l
e
<
S
t
r
i
n
g
,

I
n
t
e
g
e
r
>

F
le

e
t

A
rm

y

P
o

w
e

r

1

1
1
.
.
3

1
1

1

1

0
.
.
3
4

1

0
.
.
3
4

1

0
.
.
3
4

N
e

g
o

ti
a

to
r

+
N
e
g
o
t
i
a
t
o
r
(
m
a
p
:
M
a
p
,
q
u
e
u
e
:
L
i
n
k
e
d
B
l
o
c
k
i
n
g
Q
u
e
u
e
<
S
t
r
i
n
g
[
]
>
,

m
e
:
P
o
w
e
r
)

+
r
u
n
(
)
:

v
o
i
d

+
i
s
A
c
c
e
p
t
e
d
(
m
e
s
s
a
g
e
:
S
t
r
i
n
g
[
]
)
:

b
o
o
l
e
a
n

+
i
s
P
r
o
p
o
s
a
l
(
m
e
s
s
a
g
e
:
S
t
r
i
n
g
[
]
)
:

b
o
o
l
e
a
n

P
ro

p
o

s
a

l

+
P
r
o
p
o
s
a
l
(
o
r
i
g
M
s
g
:
S
t
r
i
n
g
[
]
)

+
g
e
t
S
e
n
d
e
r
(
)
:

S
t
r
i
n
g

+
g
e
t
R
e
p
l
y
(
)
:

S
t
r
i
n
g
[
]

O
rd

P
ro

p
P

C
E

P
ro

p
D

R
W

P
ro

p

R
o

ta
ti

n
g

L
is

t

Figure 5: UML Diagram of The Main Negotiator Package

4 TACTICS AND STRATEGIES 31

Diplobot’ by Jaspreet Shaheed [18]) that a complex algorithm in determining

tactics and strategies by taking into consideration different orders and plans

may not necessarily lead to a better bot. An example of this is how the

Diplomat bot uses intense planning and a clustering technique, but generally

performs worse against DumbBot.

We also decided not to take more then one turn into account. This is

because over a single turn in the game of Diplomacy, the board can change

so drastically that it is too complex and computationally intensive for it to be

viable. However, a blurring algorithm will be used on values which averages

out and spreads the values around the board. This will be an indirect form of

taking more than one turn into account, as units will move towards a ’goal’.

Our approach to the problem will also be developed in an object oriented

manner in Java. We will then be taking DumbBot’s heuristics as a basis to

work and modify it into our own heuristics and implementing it into our own

object orientated structure. This will then be used to add negotiation on top

of it to create an effective automated negotiating bot.

4.1 Weighting algorithm

4.1.1 Working out the strength of a power

The strength of a power is worked out by using the following quadratic equa-

tion:

Ax2 + Bx + C

where x is the number of supply centres that the power owns and A, B and

C are constant weights.

Unlike how DumbBot works, a neutral power is defined that owns all

unowned supply centres. This is so that the neutral supply centres will also

4 TACTICS AND STRATEGIES 32

have an important value assigned to it.

4.1.2 Working out the initial values

To work out a value for each node, the algorithm firstly iterates through each

province and works and an initial preliminary value based on whether it is a

supply centre that we own or not.

If it is one that we own then it works out a defence value, which is the

calculated strength of the largest adjacent power to that province. If it is

not a supply centre that we own, then it is the strength of the owning power.

When it is a neutral supply centre then value will be the ’strength’ of the

neutral power. All other provinces have no initial value.

The idea of this initial working out is that it gives values to supply centres

on how valuable they are, with supply centres that are owned by stronger

enemies more important. This will make the bot more aggressive towards

enemies which are stronger. This is good as it will attack those which are

more dangerous (and so more likely to win), however problems may arise

when the largest enemy is far away, which once the values are spread out, it

will cause the bot to unnecessarily go towards them. Another advantage to

this is that it will place no value on our supply centres which are not under

threat, which means that our bot will not unnecessarily move units to them.

The figure 6 shows the effect of this initial working out on provinces. The

map is represented by the rectangular grid and the values for each supply

centre is shown via the height of each rectangular square bar.

4.1.3 Blurring the values around the map

Once we have calculated the initial values for each province, we need to then

blur the values across the map so that it provides a sense of motivation, goal

4 TACTICS AND STRATEGIES 33

Figure 6: Initial Working

4 TACTICS AND STRATEGIES 34

and direction on the playing board.

A board without the values blurred across the map would only provide

units with provinces that have immediate values and so they would not be

able to see the more general status of the board. It would also mean that if

there were no blurring it would not provide a unit with as much motivation to

move away from a supply centre once it has captured it, as provinces further

then one province away would not be taken into account. Also, provinces

which are not a supply centre but is adjacent to many supply centres would

have no value, even though they would be worth a lot in the game. For

these reasons, a blurring algorithm to average the values out, is applied to

the map.

The blurring algorithm will be done similarly to DumbBot’s algorithm

where it will iterate multiple times through the entire map, creating numerous

values for each node, for each province, depending what iteration it is on, and

the previous iteration values. With every iteration through the map, the new

value that is assigned to the node is based on the previous iteration’s value

and it’s adjacent nodes’ previous iteration’s value, multiplied by a weighting

value. The final destination value equates to the sum of the values for a

single node, expressed in the following equation:

n=10∑

n=0

previousV alue(n)× kn

The following equation shows how each of the ten prevalues are calculated

for each node:

previousValue[n] = sum(previousValue[n-1] for all adjacent

nodes × previousValue[n-1] for this node)

The weighting value is applied so that the importance of each iteration

4 TACTICS AND STRATEGIES 35

Figure 7: Spring Weight

can be taken into account. This is important as the more the algorithm

iterates, the more of an impact that far away node’s values have on the the

chosen node, and so weighted values are used to control their importance. If

a node was very far away, it should have less of an impact. Diagram 7 & 8

are graphs that show how each weighted value compares to each other for

the Spring turns and the Fall turns.

Our algorithm will iterate through each node ten times to give the most

effective averaging.

Diagram 10 shows how the averaging effects an another rectangular map.

4.1.4 Working out the strength and competition values:

For each province, we work out the strength and competition values, where

the strength is the number of our units that can move into it (our strength),

and the competition is the maximum number of units that can move into it

that belong to a single power (our competition).

These values are for effecting the final destination value, so that we can

4 TACTICS AND STRATEGIES 36

Figure 8: Fall Weight

Figure 9: Effects of Averaging

4 TACTICS AND STRATEGIES 37

determine if we are likely to succeed in moving to a province or not. If we have

a single unit next to a valuable province, but that province is surrounded by

enemy units, then we should consider it less, as we are unlikely to successfully

obtain it.

Although this makes multiple assumptions: Enemies will not work to-

gether. We will not ask for help from another ally. Enemies want a province

as much as you do (i.e. we assume that because an enemy has a lot of units

next to a province, they will move into it).

However, as this is only the tactics and does not yet include negotiation

aspects, the first two assumptions can be solved through the use of negotia-

tion and modifying the competition, strength or final destination values.

4.1.5 Working out the final destination values:

This is finally worked out for each node by using the destination value worked

out from the blurring algorithm and adding the strength value multiplied by

a weighting and subtracting the competition value multiplied by a weighting.

This value will be the main value used for the rest of the heuristics, it

represents that node’s value of obtaining it for that turn.

4.2 Generating orders

4.2.1 Spring/Fall turns

To generate orders, it first selects a unit at random, and then selects the node

with the highest destination value that it can move to. Like DumbBot, we

have chosen to do it so that there is a random chance that it will instead select

the second best or the third best, depending on how large the differences of

their destination values are. This is done as part of it’s non-determinism,

4 TACTICS AND STRATEGIES 38

however, to a less extreme effect that DumbBot does it.

With it’s chosen node, it checks:

• If it is where it currently is already, if so then it holds.

• If it already has one of our occupying units that is not moving, then

it either supports it or selects another node (depending on if it thinks

that the holding unit will succeed or not).

• If it has one of our units that is already moving there, then it similarly

supports it or selects another node.

• Else it moves there.

It then selects the next unit at random, which doesn’t have an order yet and

applies the algorithm to that unit.

Once all the units have been given an order, it can then check for wasted

holds. As holds are equivalently the same to a support, then a holding unit

can instead (if it is able to) support another unit, whilst still providing the

same functionality. This final part of the algorithm then finds all the holding

units, and checks to see if it can perform a better move. If not, then it carries

on holding.

Order generation in Diplomacy can be complex and computationally in-

tense. This algorithm is very simple and it will usually select a good move

set. It will not perform any obviously wasteful moves, and it will go after

the nodes which are most important to it. It briefly takes into account other

powers and their units and performs supports if it needs to. It also never

causes bounces to occur within it’s own units and it will also never tell a unit

to do something which will be an illegal move (such as making a fleet move

inland, or an army into the sea).

4 TACTICS AND STRATEGIES 39

However, it does not try to determine the best selection of orders, but

instead non-deterministically selects units. This is the biggest flaw in the

algorithm as it means that it will not make the best selection. Although,

this has been done with other bots (such as Albert [21]) and it can be very

computationally intensive. It is also not clear how we can determine whether

we should use other powers and ask them to perform moves. It also notable

does not perform convoys, but we believe from playing the game that it is

not vitally integral to the winning of the game.

4.2.2 Summer/Autumn turns (retreat/disband)

Similarly to the spring and fall turns, it selects a random unit which it has to

retreat/disband and then selects a node with the highest destination value

that it can move to. If there are no nodes that it can move to, then it is

forced to disband.

This is a good way to do it as it finds the best places for each individual

disbanding unit. However, it does not find the most optimal positions.

4.2.3 Winter turns (builds/disband)

This is also calculated similarly to the spring and fall turns. If it has builds

then it builds on the home nodes which have the highest destination value,

and if it has to disband units, then it selects the unit on the node with the

smallest destination value.

This is again good as it will build in the places which needs a unit most,

and it disbands units on places where we need it least. It also automatically

selects which type of unit to build, based on which node will have the highest

value.

5 NEGOTIATION 40

5 Negotiation

With an implementation of a proven tactical algorithm in place we moved

on to implementing negotiation. This chapter discusses the structure of our

implementation of this aspect of our AI.

5.1 Message Listener and Thread Interaction

The main class of our bot with assistance from the Java AI Communication

AI acts as a message listener. When we identify that we have received a

diplomatic message this is added to a synchronised queue provided by the

Java standard library. When the server indicates that a turn has started

we create a new thread (called Negotiatior) that runs concurrently with the

message listener to process the queue. This thread then performs all the

necessary work to negotiate and finally generates our moves before terminat-

ing thus ending the turn. Importantly to prevent concurrency issues arising

the message listener will never modify any program data other than message

queue (which is synhronised) whilst the Negotiator thread is alive preventing

concurrency issues from arising.

5.2 The Negotiator Thread

The overall control flow of the Negotiator thread is illustrated in the flow

chart below. After performing initialisation we process the message queue

until it is empty (it may be empty to begin with). We have now reached a

gap in the ’conversation’ so we send our outgoing messages. We now wait

for replies on the message queue for a while (a constant time set in the code

which can be tweaked) waking up if we receive one. We then start this process

again sending outgoing messages, processing the queues and entering the wait

5 NEGOTIATION 41

period. Once the wait period has timed out (i.e. negotiation has died down)

we exit this loop, submit our orders and terminate. This provides a general

structure for negotiation which can be customised by modifying the functions

to generate outgoing orders, handling an incoming message and generating

our orders once the loop has finished.

5.3 Our Negotiation Strategy

5.3.1 Peace To All

Our bot’s negotiation strategy was at first very complex, as described in

7.2.1. However due to lack of time we only managed to implement part

of this strategy. We correctly implemented the banking protocol, where

each power has their own Credit Limit, Balance, Interest & Credit Rating.

However, as of now most of that information is fairly useless because the

Diplominator never discovers what would be the best time to ask for a favour

from another bot, so no power can ever regain its balance to above zero,

and thus will always briefly take advantage of the Diplominator, then the

power the Diplominator controls would cease to be allies with the asking

power. However, the negotiation part which remains fully implemented is

that dealing with peace, and back-stabbing those who we are allied with

when is most opportune for us. We deal with this by offering peace to all

powers, to first establish which players are capable of negotiation, and also

which of those which can want to be allies with us. We discovered the ”peace”

request in DAIDE syntax to be extremely vague; and after asking around the

Official Yahoo NewsGroup for the DAIDE Diplomacy Server, everyone on

there also agreed it was vague [26]. So we set it so that whenever peace was

issued to another power, and they accepted, or if they issued the command

5 NEGOTIATION 42

Figure 10: Control Flow For The Negotiator Class

5 NEGOTIATION 43

to us (by default we would reply with yes, proividing we did not want to

back-stab them at the time, nor was there enemy factor above the threshold)

we would decrease the absolue weights (and thus later the average) of their

home supply centres. This way, we would attack them less, generally, if they

were in their homeland, but if they were in our way to get to a supply centre

we needed, then we would not treat them any different to another power on

the board.

5.3.2 Back-stab

This method of making peace with allies worked very well early to mid game,

however, as soon as 1 power starts to dominate much more problems arose

(which ultimately manifested itself as the same problem). This was basically

that the powers would never break free of their general areas, they had the

possibility that they would get boxed in. This happened when 2/3 powers

were close together, allied and kept one in a corner, or when all of the powers

were allied - none of them would ever break over the 10 power mark, or

at least not for many years. The other problem was similar in that when

our bot played other bots, or human players, they (if clever enough) would

realise the opportune moment to disregard the friendship, and take over the

power, thus making themselves a larger power on the board. This would work

well for them, as clearly the pieces would not be set up to effectively guard

against a border shard with an ally, so a take over could be quick. To fix this

problem, we had a value of supply centres, which, when reached, the power

in question disregards all friendships, and sets a boolean ”back stab” in the

powers of its allies to be true. This way, instead as previously done, it would

decrease the absolute value of the home supply centres of its allies, it would

increase them. Thus increasing the averages around it, and making us more

6 CONCLUSION AND EVALUATION 44

likely to target them. We experimented with this number and found that

its optimum value lay around 10 supply centres, when we should attempt to

take a lead. However we found that if we attempt to break away and take

the lead, we will lose our friendships, and thus the others may all turn on us

at once. If we are unsuccessful, we end up staying alone, and will probably

be out shortly after. So we set it so that once we go below 9 values, after a

back-stabbing attempt, we should give up on it, stop attacking our former

allies, and re-request friendship.

6 Conclusion and Evaluation

In this chapter we aim to show that our bot with negotiation performs far

better than not-negotiation. To do this we performed tests with our bot

against DumbBot a very good no press bot.

6.1 Tests Performed and Results

Our tests consisted of pitting our bot against DumbBot in games of varying

composition i.e. ranging from mostly DumbBots to mostly our bots. By

observing the number of games won by one of our bots we can begin to rate

our effectiveness compared to the predicted number of games we would win

if the victor were simply a random player in the game. As a control we

can simply repeat these tests with our bot with negotiation disabled i.e. in

a press level 0 game. This should allow us to show that negotiating bots

perform better than non-negotiating ones.

6 CONCLUSION AND EVALUATION 45

Composition Won by us Total Games Win % for Us Expected Win %

6 Dips, 1 Dumb 11 14 78.57% 85.71%

5 Dips, 2 Dumb 11 14 78.57% 71.43%

4 Dips, 3 Dumb 8 14 57.14% 57.14%

3 Dips, 4 Dumb 7 14 50.00% 42.86%

2 Dips, 5 Dumb 3 14 21.43% 28.57%

1 Dip, 6 Dumb 1 14 7.14% 14.29%

Table 2: Table Showing Results for the Diplominator for Various Game Com-

positions (without Negotiation)

Composition Won by us Total Games Win % for Us Expected Win %

6 Dips, 1 Dumb 18 18 100.00% 85.71%

5 Dips, 2 Dumb 18 20 90.00% 71.43%

4 Dips, 3 Dumb 19 20 95.00% 57.14%

3 Dips, 4 Dumb 10 20 50.00% 42.86%

2 Dips, 5 Dumb 7 20 35.00% 28.57%

1 Dip, 6 Dumb 1 20 5.00% 14.29%

Table 3: Table Showing Results for the Diplominator for Various Game Com-

positions (with Negotiation)

6 CONCLUSION AND EVALUATION 46

Figure 11: Showing Results for the Diplominator for Various Game Compo-

sitions (without Negotiation)

6 CONCLUSION AND EVALUATION 47

Figure 12: Showing Results for the Diplominator for Various Game Compo-

sitions (without Negotiation)

6 CONCLUSION AND EVALUATION 48

6.2 Analysis and Conclusion

The first chart shows that when our bot does not negotiate we perform quite simi-

larly to DumbBot i.e. we beat it roughly as often as would be expected by random

chance across the range of game compositions. This is as expected as without

negotiation works very similarly to DumbBot. When we enable negotiation and

repeat the tests the second chart shows us that we beat DumbBot across the board

except in the case where there is only one of us (where negotiation is obviously

going to be ineffective.

Furthermore we can also see that the more of our negotiating bots there are

the better we play. This is probably due to the negotiating bots ganging up on

and eliminating non-negotiating ones.

From this we can conclude that even rudimentary negotiation gives a player

an advantage in Diplomacy. This is precisely what one would predict.

6.3 Evaluation

We have shown reasonably strongly that negotiation improves play in the game of

Diplomacy. This conclusion could obviously be strengthened by more repetitions

(time constraints limited the duration of our testing). With more time and careful

analysis it should be possible to go much further. For example one could analyse

which groupings of powers were particularly effective when played by negotiating

bots Study into tipping points where alliances break down may also be useful.

More interesting results could also be acquired by improving our negotiating

strategy as currently it is quite simple. Particularly analysis of the rewards and

penalties for deceit would be of interest. We discuss further possible interesting

expansions to the negotiating strategy in the following chapter(7.2).

7 FUTURE WORK 49

7 Future Work

There is vast potential for future work in this area. Diplomacy AI development is

still relatively young compared to more studied games. In particular we can break

these potential extensions down into three areas.

7.1 Improvements to the DAIDE framework

We found ourselves frequently parsing very similar messages. As we did not pro-

duce a specific parser/compiler for the DAIDE syntax this was rather time con-

suming. The development of a Java parser/compiler to automate this work would

allow AI developers to focus on higher level concerns rather than worry about

IO issues. Of particular use may be the ANTLR tool [19] as this is specifically

designed for this kind of problem.

7.2 Improvements to Our Code Base

We succesfully developed a general negotiation system for Diplomacy bots with

potential for improvement by modfication of several core methods (see section

5.2). This should allow the bots strategy to be modified without changing its

overall architecture. Whilst we ran out of time to use this method for generating

sophisticated negotiation (we only ended up operating at DAIDE press level 10)

we believe there is vast potential for extension.

7.2.1 Banker Paradigm

Specifically we intend to, but run out of time to implement a DAIDE press level

20 bot based around a banking system. Press level 20 opens up the possibility

for bots to suggest moves to each other which may either be accepted or rejected.

However only one move may be suggested in one offer. This results in the problem

of our bot having to consider whether it is worthwhile to help another player based

7 FUTURE WORK 50

on their liklihood of reciprocating in the future. This problem seems to map very

well to how banks decide whether or not to lend money to individuals. We believe

a negotiation strategy modelled around how banks act in these circumstances may

form the core of an effective press level 20 bot. This strategy would contain several

key components.

Method for Evaluating Utility of Cooperation In order for a banking system

to work effectively we must have a currency. In the simplest case where at press

level 20 we are simply discussing the values of move requested by another player we

could use DumbBots heuristic to calculate a destination value (from the perspective

of the player asking) for the province they are requesting assistance in. This

gives a simple heuristic for evaluating that assistance. More complicated valuation

functions could be developed to create a more sophisticated bot.

Method for Evaluating the Creditworthiness of Opposition Players Obviously

it is foolhardy to assist players who are unlikely to help us in return. Thus an

intelligent banker should estimate how much of a credit risk each other player is.

This could range from a simple consideration the percentage of times the opponent

has assisted us when asked to far more sophisticated heuristics taking into account

more diverse criteria.

A Credit Limit In order to prevent our banker extending infinite credit and

assisting opponents indefinitely their should be some notion of a credit limit. Just

as there is a limit on our overdrafts beyond which we cannot borrow more we

should at some point stop assisting opponents until they pay us back. This limit

could be dependent on many factors for example the closeness of our relationship

with a particular power or there previous banking history.

Interest By taking into account the above factors it should be possible to charge

some notional interest for our assistance. This can be used to ensure we profit from

such exchanges.

We believe it would be of particular interest to analyse how changing the

honesty of a banker affects it’s success. Do bankers who are honest do better or is

7 FUTURE WORK 51

it better to renege on one’s deals.

7.2.2 Other Extensions

This is but one method of improving our code. Due to it’s architecture futre

developers should be able to create a variety of negotiting strategies simply by

modifying a few methods called by the negotiatior class. Specifically methods

to generate outgoing orders, process individual incoming messages and generate

moves once negotiation is finished. This abstracts away many of the issues with

building a negotiating player.

7.3 Open-ended Improvents

The scope for Diplomacy AI development is huge. Specifically we believe the

following work would be of interest:

Negotiation at High Press Levels Currently most bots available for the DAIDE

framework negotiate only at or below press level 20. There is a large amount

of room for the development of bots far more sophisticated this. The DAIDE

framework also provides incremental stepping stones (i.e. gradually increasing

press levels) towards this.

Tactical Play beyond DumbBot Must current bots do not play at a tactical

level much better than DumbBot without time consuming algorthims for move

generation. By creating better tactical algorithms we may not only create better

tactical bots but we may also improve the potential for further modifying these

tactics with strategic and negotiating play.

Machine Learning Currently most bots learn very little during the course of

play. If a bot can be designed that interprets and learns from the actions of its

oppenents a better bot may be created.

REFERENCES 52

References

[1] Game publishers web site http://www.wizards.com/default.asp?x=ah/prod/diplomacy

[2] ”Board Game Geek” article on Diplomacy

http://www.boardgamegeek.com/game/483

[3] Diplomacy AI Development Environment (DAIDE) Homepage

http://www.daide.org.uk/index.xml

[4] The Rules of Diplomacy http://www.wizards.com/avalonhill/rules/diplomacy.pdf

[5] Diplomacy Wiki http://www.diplom.org/bin/dipwiki.pl

[6] diplomacy-archive.com http://www.diplomacy-archive.com/home.htm

[7] Opening Strategy, Part I: Philosophy by Jake Orion http://www.diplomacy-

archive.com/resources/strategy/articles/opening strategy1.htm

[8] English Opening Strategy by Stephen Agar http://www.diplomacy-

archive.com/resources/strategy/articles/england.htm

[9] Brainshell http://www.brainshell.org/

[10] Maginot http://maginot.diplomacy.se/

[11] Client List http://www.daide.org.uk/clients.xml

[12] Official DAIDE Syntax http://www.ellought.demon.co.uk/dipai/dpp syntax.rtf

[13] DAIDE Server Application http://www.ellought.demon.co.uk/dipai/aiserver.zip

[14] C/C++ Framework http://www.ellought.demon.co.uk/dipai/aiclient.zip

[15] DAIDE Mapper http://www.ellought.demon.co.uk/dipai/aimapper.zip

[16] Java Framework http://web.unbc.ca/ yuled/dip/

[17] .NET Framework http://daidedotnet.sourceforge.net/

REFERENCES 53

[18] Jaspreet Shaheed’s Diplomat http://www.doc.ic.ac.uk/ jss00/old/final report.ps

[19] ANTLR Parser Generator http://www.antlr.org/

[20] DumbBot Source Code http://www.ellought.demon.co.uk/dipai/dumbbot.zip

[21] Albert Source and Creator http://ca.geocities.com/stretchy@rogers.com/Albert.htm

[22] BlabBot source and Creator http://uk.geocities.com/johnnewbury1/diplomacy/blabbot.htm

[23] Israeli Diplomat source and Creators http://www.cs.biu.ac.il/ sarit/Articles/13.ps

[24] Bordeaux Diplomat http://devel.diplom.org/DipPouch/Zine/list.html#DPP

[25] The LA Diplomat Documentation http://www.cs.ucla.edu/ ashapiro/ShapiroA CG2002.pdf

[26] The Official DAIDE Yahoo NewsGroup http://games.groups.yahoo.com/group/dipai/

